Skip to content

Publications

Conference Proceedings

2025

Learning Equivariant Non-Local Electron Density Functionals
N. Gao*, E. Eberhard*, S. Günnemann.
⭐ Spotlight @ ICLR — top 5.1%


Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space
N. Gao*, A. Ketata*, J. Sommer*, T. Wollschläger, S. Günnemann.
ICLR 2025


2024

Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations
N. Gao, S. Günnemann.
🏆 Oral @ NeurIPS — top 0.4%


2023

Generalizing Neural Wave Functions
N. Gao, S. Günnemann.
ICML 2023


Uncertainty Estimation for Molecules: Desiderata and Methods
T. Wollschläger, N. Gao, B. Charpentier, A. Ketata, S. Günnemann.
ICML 2023


Ewald-based Long-Range Message Passing for Molecular Graphs
A. Kosmala, J. Gasteiger, N. Gao, S. Günnemann.
ICML 2023


Sampling-free Inference for Ab-Initio Potential Energy Surface Networks
N. Gao, S. Günnemann.
ICLR 2023


2022

A Hybrid Quantum-Classical Neural Network Certification Algorithm
N. Franco, T. Wollschläger, N. Gao, J.M. Lorenz, S. Günnemann.
IEEE QCE 2022


Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions
N. Gao, S. Günnemann.
⭐ Spotlight @ ICLR — top 7%


2020

Fast and Flexible Temporal Point Processes using Triangular Maps
O. Shchur, N. Gao, M. Biloš, S. Günnemann.
🏆 Oral @ NeurIPS — top 1%


High-Dimensional Similarity Search with Quantum-assisted VAE
N. Gao, M. Wilson, T. Vandal, W. Vinci, R. Nemani, E. Rieffel.
🏆 Oral @ SIGKDD Research Track


Journal Articles

2025

Artificial intelligence for science in quantum, atomistic, and continuum systems
X. Zhang, L. Wang, J. Helwig, Y. Luo, C. Fu, Y. Xie, M. Liu, Y. Lin, Z. Xu, K. Yan, K. Adams, M. Weiler, X. Li, T. Fu, Y. Wang, A. Strasser, H. Yu, Y. Xie, X. Fu, S. Xu, Y. Liu, Y. Du, A. Saxton, H. Ling, H. Lawrence, H. Stärk, S. Gui, C. Edwards, N. Gao, A. Ladera, T. Wu, E. F. Hofgard, A. Mansouri Tehrani, R. Wang, A. Daigavane, M. Bohde, J. Kurtin, Q. Huang, T. Phung, M. Xu, C. K. Joshi, S. V. Mathis, K. Azizzadenesheli, A. Fang, A. Aspuru-Guzik, E. Bekkers, M. Bronstein, M. Zitnik, A. Anandkumar, S. Ermon, P. Liò, R. Yu, S. Günnemann, J. Leskovec, H. Ji, J. Sun, R. Barzilay, T. Jaakkola, C. W. Coley, X. Qian, X. Qian, T. Smidt, S. Ji.
Foundations and Trends in Machine Learning


2023

Neural Network Ansatz for Periodic Wave Functions and the Homogeneous Electron Gas
N. Wilson, S. Moroni, M. Holzmann, N. Gao, P. Wudarski, T. Vegge, A. Bhowmik.
Physical Review B


Preprint

2025

Accurate Ab-initio Neural-network Solutions to Large-Scale Electronic Structure Problems
N. Gao*, M. Scherbela*, P. Grohs, S. Günnemann.


An ab initio foundation model of wavefunctions that accurately describes chemical bond breaking
A. Foster, Z. Schätzle, P. B. Szabó, L. Cheng, J. Köhler, G. Cassella, N. Gao, F. Noé.


2021

Simulations of SOTA fermionic neural network wave functions with diffusion Monte Carlo
M. Wilson, N. Gao, F. Wudarski, E. Rieffel, N. M. Tubman.

Workshop and Other Publications

2025

On Learning Quasi-Lagrangian Turbulence
A. P. Toshev, T. Kalinov, N. Gao, S. Günnemann, N. A. Adams.
⭐ Spotlight @ ICLR Workshop on Machine Learning Multiscale Processes


2024

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space
N. Gao*, A. Ketata*, J. Sommer*, T. Wollschläger, S. Günnemann.
🏆 Best Paper Runner-up @ GRaM ICML


On Representing Electronic Wave Functions with Sign Equivariant Neural Networks
N. Gao, S. Günnemann.
AI4DifferentialEquations in Science @ ICLR